Ôn tập toán 7

LL

Tìm x biết :

a)2x+1)4 = (2x+1)6

b)\(\left|\left|x+3\right|-8\right|=20\)

c) \(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)

TH
6 tháng 4 2017 lúc 21:00

câu a với câu b dễ mà , có thể câu b cần lập bảng xét dấu , dựa vào đó rồi suy ra các trường hợp cầm tìm , còn câu c bạn trừ cả 2 về cho 2 ta suy ra (x-2010)(1/2009 + 1/2008 -1/2007-1/2006) = 0

từ đó suy ra x=2010

có j khó hiểu có thể ib hỏi mik ........sorry ko giải kĩ ra được vì bây h mik đag bận !

Bình luận (0)
HQ
6 tháng 4 2017 lúc 21:20

a) Ta có:

\(\left(2x+1\right)^4=\left(2x+1\right)^6\)

\(\Leftrightarrow\left(2x+1\right)^4-\left(2x+1\right)^6=0\)

\(\Leftrightarrow\left(2x+1\right)^4\left[\left(2x+1\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+1\right)^4=0\\\left(2x+1\right)^2-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-0,5\\\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-0,5\\x=0\\x=-1\end{matrix}\right.\)

b) Ta có:

\(|\left|x+3\right|-8|=20\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+3\right|-8=20\\\left|x+3\right|-8=-20\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left|x+3\right|=28\\\left|x+3\right|=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+3=28\\x+3=-28\end{matrix}\right.\\x+3\in\varnothing\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=25\\x=-31\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=25\\x=-31\end{matrix}\right.\)

c) \(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)

\(\Leftrightarrow\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)

\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\)

\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)

\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)

\(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\)

\(\Rightarrow x-2010=0\Leftrightarrow x=2010\)

Vậy \(x=2010\)

Bình luận (0)
H24
6 tháng 4 2017 lúc 21:29

a) (2x + 1)4 = (2x + 1)6

Mà 2 vế có chung 2x + 1

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\2x+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=0-1=-1\\2x=1-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=0\end{matrix}\right.\)

b) ||x + 3| - 8| = 20

\(\Rightarrow\left[{}\begin{matrix}\left|x+3\right|-8=20\\\left|x+3\right|-8=-20\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+3\right|=20+8=28\\\left|x+3\right|=-20+8=-12\end{matrix}\right.\)

\(\left|x+3\right|\ge0\Rightarrow\left|x+3\right|=28\)

\(\Rightarrow\left[{}\begin{matrix}x+3=28\\x+3=-28\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=28-3=25\\x=-28-3=-31\end{matrix}\right.\)

c) \(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)

\(\Rightarrow2-\left(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}\right)=2-\left(\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\right)\)

\(\Rightarrow2-\dfrac{x-1}{2009}-\dfrac{x-2}{2008}=2-\dfrac{x-3}{2007}-\dfrac{x-4}{2006}\)

\(\Rightarrow1-\dfrac{x-1}{2009}+1-\dfrac{x-2}{2008}=1-\dfrac{x-3}{2007}+1-\dfrac{x-4}{2006}\)

\(\Rightarrow\dfrac{2009-\left(x-1\right)}{2009}+\dfrac{2008-\left(x-2\right)}{2008}=\dfrac{2007-\left(x-3\right)}{2007}+\dfrac{2006-\left(x-4\right)}{2006}\)

\(\Rightarrow\dfrac{2009-x+1}{2009}+\dfrac{2008-x+2}{2008}=\dfrac{2007-x+3}{2007}+\dfrac{2006-x+4}{2006}\)

\(\Rightarrow\dfrac{2010-x}{2009}+\dfrac{2010-x}{2008}=\dfrac{2010-x}{2007}+\dfrac{2010-x}{2006}\)

\(\Rightarrow\dfrac{2010-x}{2009}+\dfrac{2010-x}{2008}-\dfrac{2010-x}{2007}-\dfrac{2010-x}{2006}=0\)

\(\Rightarrow\left(2010-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)

\(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\)

=> 2010 - x = 0

=> x = 2010 - 0

=> x = 2010

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
LD
Xem chi tiết
NT
Xem chi tiết
LD
Xem chi tiết
PT
Xem chi tiết
QS
Xem chi tiết
DN
Xem chi tiết
LL
Xem chi tiết
DN
Xem chi tiết