Cho f(x)=\(x^{2n}-x^{2n-1}+.....+x^2-x+1\) (x\(\in\)N)
g(x)=\(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\) (x\(\in\)N)
Tính giá trị của hiệu f(x)-g(x) tại x=\(\dfrac{1}{10}\)
Cho f(x) = x\(^{2n}\) - x\(^{2n-1}\) + ... + x\(^2\) - x + 1 ( x \(\in\) N )
g(x) = -x\(^{2n+1}\) + x\(^{2n}\) - x\(^{2n-1}\) + ... + x\(^2\) - x + 1 ( x \(\in\) N )
Tính giá trị của hiệu f(x) - g(x) tại x = 1/10
Cho f(x)=\(x^{2n}-x^{2n-1}+.....+x^2-x+1\) (x\(\in\)N)
g(x)=\(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\) (x\(\in\)N)
Tính giá trị của hiệu f(x)-g(x) tại x=\(\dfrac{1}{10}\)
1, tìm x biết
( 3x^2 - 51)^2n = 576^n
câu 1:tìm 2 phân số có tử bằng 9,biết giá trị mỗi phân số ấy lớn hơn -11/3 nhỏ hơn -11/5
câu 2:tìm các số nguyên x để các phân số sau có giá trị là một số nguyên và tính giá trị ấy:
1.A=x+5/x+1 2.B=2x+4/x+3 3.C=3x+8/x-1 4.D=2x-3/x-1 5.E=5x+9/x+5 6.F=4x+9/2x+1 7.G=6x+5/2x-1 8.H=4x+4/2x+4
Tìm x
a) x-6/7 + x-7/8 + x-8/9 = x-9/10 + x-10/11+x-11/12
b) x+32/11 + x+23/12 = x+38/13 + x+27/14
c) | x-2| = 13
d) 3|x-2| + |4x-8| = |-2| - |1/3|
e) |3x-2|+5^-1 = 3 + | x- (2/3) |
f) | x+2 | + | x-2 | = 3
g) (2x-1)^2 - 5 = 20
i) (x+2)^2 = 1/2 - 1/3
k) (x-1)^3 = (x-1)
m) (x-1)^x+2 = (x-1)^2
n) (x+3)^y+1 = (2x-1)^y+1 vs y là 1 số tự nhiên .
Mọi người giúp mình nha????
Bài 1:thu gọn đa thức
a,\(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
b,\(-54y^2\cdot bx\) với b là hằng số
c,\(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
Bài 2:cho 2 đa thức:
\(f\left(x\right)=x^5-3x^2+7x^4-9x^3-\frac{1}{4}\)
\(g\left(x\right)=5x^4-x^5+x^2+3x^2-\frac{1}{4}\)
a,Hãy thu gọn và sắp xếp hai đa thức trên
b,Tính \(f\left(x\right)+g\left(x\right)\) và \(f\left(x\right)-g\left(x\right)\)
Bài 3:Cho \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
a,Thu gọn f(x)
b,Tính f(1) và f(-1)
Tìm n , biết
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
1) Cho \(A=\frac{5x-4}{2x+5}-\frac{3y-3x}{2y-5}\) và \(3x-y=5\).Tính A
2) Tìm \(x,y,z\in Q\)biết :
a) \(x\cdot y=\frac{1}{5};y\cdot z=\frac{4}{5};x\cdot z=\frac{3}{4}\)
b) Đủ tất cá các điều kiện sau :
\(x\cdot y+y\cdot z+y^2=18\)
\(x\cdot\left(x+y+z\right)=-12\)
\(x\cdot z+z^2+y\cdot z=30\)