Bài 11: Tính chất cơ bản của phép nhân phân số

LT

Tìm tích

1. ( 1/2+1 ) * ( 1/3+1 ) * ( 1/4+1 ) . . . (1/999+1)

2. ( 1/2 - 1 ) * ( 1/3 -1 ) * ( 1/4 - 1 ) . . . ( 1/1000 - 1)

3. 3/2^2 * 8/3^2 * 15/4^2 . . . 99/10^2 .

Các bạn giúp mình giải bài này nhanh nhé

Ngaỳ mai cô mình kiểm tra bài rùi

Gấp lắm

TH
14 tháng 3 2018 lúc 21:57

1.\(\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot\left(\dfrac{1}{4}+1\right)..\left(\dfrac{1}{999}+1\right)\)

\(=\left(\dfrac{1}{2}+\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}+\dfrac{3}{3}\right)\cdot...\left(\dfrac{1}{999}+\dfrac{999}{999}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{1000}{999}\)\(=\dfrac{3\cdot4\cdot5\cdot...\cdot1000}{2\cdot3\cdot4\cdot...\cdot999}\)

\(=\dfrac{1000}{2}=500\).

2.

\(\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{1000}-1\right)\)

\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\cdot\left(\dfrac{1}{3}-\dfrac{3}{3}\right)...\left(\dfrac{1}{1000}-\dfrac{1000}{1000}\right)\)

Thôi mai mk làm tiếp nha

Bình luận (2)

Các câu hỏi tương tự
SK
Xem chi tiết
DT
Xem chi tiết
SK
Xem chi tiết
MC
Xem chi tiết
BT
Xem chi tiết
JP
Xem chi tiết
ML
Xem chi tiết
JP
Xem chi tiết
NA
Xem chi tiết