Ôn tập toán 7

NP

Tìm tỉ số của A và B , biết rằng :

A = \(\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+.....+\dfrac{1}{n\left(1980+n\right)}.....+\dfrac{1}{25.2005}\)

B = \(\dfrac{1}{1.26}+\dfrac{1}{2.27}+......+\dfrac{1}{m\left(m+25\right)}+.......+\dfrac{1}{1980.2005}\)

Trogn đó A có 25 số hạng và B có 1980 số hạng

HQ
5 tháng 4 2017 lúc 20:13

Ta có:

\(A=\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+...+\dfrac{1}{n\left(1980+n\right)}+...+\dfrac{1}{25.2005}\)

\(=\dfrac{1}{1980}\left(\dfrac{1981-1}{1.1981}+\dfrac{1982-2}{2.1982}+...+\dfrac{1980+n-n}{n\left(1980+n\right)}+...+\dfrac{2005-25}{25.2005}\right)\)

\(=\dfrac{1}{1980}\left(1-\dfrac{1}{1981}+\dfrac{1}{2}-\dfrac{1}{1982}+...+\dfrac{1}{n}-\dfrac{1}{1980+n}+...+\dfrac{1}{25}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{1980}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)

Lại có:

\(B=\dfrac{1}{1.26}+\dfrac{1}{2.27}+...+\dfrac{1}{m\left(m+25\right)}+...+\dfrac{1}{1980.2005}\)

\(=\dfrac{1}{25}\left(\dfrac{26-1}{1.26}+\dfrac{27-2}{2.27}+...+\dfrac{25+m-m}{m\left(25+m\right)}+...+\dfrac{2005-1980}{1980.2005}\right)\)

\(=\dfrac{1}{25}\left(\dfrac{1}{1}-\dfrac{1}{26}+\dfrac{1}{2}-\dfrac{1}{27}+...+\dfrac{1}{m}-\dfrac{1}{25+m}+...+\dfrac{1}{1980}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{25}\left[\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{1980}\right)-\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{2005}\right)\right]\)

\(=\dfrac{1}{25}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{1981}+\dfrac{1}{1982}+...+\dfrac{1}{2005}\right)\right]\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{1980}}{\dfrac{1}{25}}=\dfrac{5}{396}\)

Vậy tỉ số của \(A\)\(B\)\(\dfrac{5}{396}\)

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
TM
Xem chi tiết
VA
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết