Ôn tập toán 6

NL

Tìm số tự nhiên n để phân số \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tù nhiên

b) Là phân số tối giản

Giúp mk vs

TT
28 tháng 10 2016 lúc 22:40

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tù nhiên thì \(91⋮3n+4⋮3n+4\) là ước của 91 hay \(3n+4\in\left\{1;7;13;91\right\}\).

Với \(3n+4=1\) \(n=-1\) loại vì n là số tù nhiên

Với \(3n+4=7\) \(n=1\) nhận \(A=2+13=15\)

Với \(3n+4=13\) \(n=3\) nhận \(A=2+7=9\)

Với \(3n+4=91\) \(n=29\) nhận \(A=2+1=3\)

b) Để A là phân số tối giản thì 91 không chia hết \(3n+4\) hay \(3n+4\) không là ước của 91.

\(\Rightarrow3n+4\) không chia hết cho ước nguyên tố của 91. Vậy suy ra:

\(3n+4\) không chia hết cho 7 \(\Rightarrow n\ne7k+1\)

\(3n+4\) không chia hết cho 13 \(\Rightarrow n\ne13m+3\)

Bình luận (2)
SG
28 tháng 10 2016 lúc 22:55

a) Đặt \(A=\frac{6n+99}{3n+4}\)

Ta có: \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2.\left(3n+4\right)+91}{3n+4}=\frac{2.\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

Để A là tự nhiên thì \(\frac{91}{3n+4}\) là số tự nhiên

\(\Rightarrow3n+4\inƯ\left(91\right)\)

Mà 3n + 4 chia 3 dư 1 và \(3n+4\ge4\) do n ϵ N

\(\Rightarrow3n+4\in\left\{7;13;91\right\}\)

\(\Rightarrow3n\in\left\{3;9;87\right\}\)

\(\Rightarrow n\in\left\{1;3;29\right\}\)

Vậy \(n\in\left\{1;3;29\right\}\) thỏa mãn đề bài

b) Gọi d là ước nguyên tố chung của 6n + 99 và 3n + 4

\(\Rightarrow\begin{cases}6n+99⋮d\\3n+4⋮d\end{cases}\)\(\Rightarrow\begin{cases}6n+99⋮d\\6n+8⋮d\end{cases}\)\(\Rightarrow\left(6n+99\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow91⋮d\)

Mà d nguyên tố \(\Rightarrow d\in\left\{7;13\right\}\)

+ Với d = 7 thì \(\begin{cases}6n+99⋮7\\3n+4⋮7\end{cases}\)\(\Rightarrow\begin{cases}6n+99-105⋮7\\3n+4-7⋮7\end{cases}\)\(\Rightarrow\begin{cases}6n-6⋮7\\3n-3⋮7\end{cases}\)

\(\Rightarrow\begin{cases}6.\left(n-1\right)⋮7\\3.\left(n-1\right)⋮7\end{cases}\). Mà (6;7)=1; (3;7)=1 \(\Rightarrow n-1⋮7\)

\(\Rightarrow n=7.a+1\left(a\in N\right)\)

Tương tự với trường hợp d = 13 ta tìm được \(n=13.b+3\left(b\in N\right)\)

Vậy với \(n\ne7.a+1\left(a\in N\right)\)\(n\ne13.b+3\left(b\in N\right)\) thì \(\frac{6n+99}{3n+4}\) là phân số tối giản

Bình luận (1)
ND
28 tháng 10 2016 lúc 22:18

mai nhé giờ mình ngủ rồi

Bình luận (1)

Các câu hỏi tương tự
TG
Xem chi tiết
DA
Xem chi tiết
LD
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
CT
Xem chi tiết
CT
Xem chi tiết
SL
Xem chi tiết