Ôn tập toán 7

TN

Tìm số TN n thỏa mãn điều kiện: \(2.2^2+3.2^3+4.2^4+....+n.2^n=2^{n+11}\)

NT
26 tháng 3 2017 lúc 19:56

Đặt A=\(2.2^2+3.2^2+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)

\(\Rightarrow2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)

\(\Rightarrow A=n.2^{n+1}-2.2^2-\left(2^3+2^4+...+2^n\right)\)

Đặt \(B=2^3+2^4+...+2^n\Rightarrow2B=2^4+2^5+...+2^{n+1}\)

\(\Rightarrow2B-B=\left(2^4+2^5+...+2^{n+1}\right)-\left(2^3+2^4+...+2^n\right)\)

\(\Rightarrow B=2^{n+1}-2^3\)

\(\Rightarrow A=n.2^{n+1}-2.2^2-\left(2^{n+1}-2^3\right)\)

=\(n.2^{n+1}-8-2^{n+1}+8=\left(n-1\right).2^{n+1}\)

Mà A=\(2^{n+11}\Rightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)

\(\Rightarrow2^{n+1}.\left(n-1\right)=2^{n+1}.2^{10}\Rightarrow n-1=2^{10}=1024\Rightarrow n=2015\)

Vậy...

p hk tốt nha haha

Bình luận (0)

Các câu hỏi tương tự
PU
Xem chi tiết
TP
Xem chi tiết
CY
Xem chi tiết
JP
Xem chi tiết
LV
Xem chi tiết
ND
Xem chi tiết
NX
Xem chi tiết
QN
Xem chi tiết
NG
Xem chi tiết