Vì 2n - 5 \(⋮\) n mà 2n \(⋮\) n nên :
=> 5 \(⋮\) n hay n \(\in\) Ư(5)
Ư(5) = {\(\pm\)1;\(\pm\)5}
n \(\in\) {\(\pm\)1;\(\pm\)5}
Vậy n \(\in\) {\(\pm\)1;\(\pm\)5}
\(\left(2n-5\right)⋮n\)
\(\Rightarrow n+n-5⋮n\)
Vì \(n+n⋮n\) nên \(-5⋮n\)
\(\Leftrightarrow2n-5\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
\(2n-5\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(0\) | \(2\) | \(3\) | \(5\) |
Vậy \(2n-5\in\left\{0;2;3;5\right\}\)