\(2a+1⋮a-1\)
\(2a-2+3⋮a-1\)
\(2\left(a-1\right)+3⋮a-1\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(a-1\right)⋮a-1\\3⋮a-1\end{matrix}\right.\)
\(3⋮a-1\)
\(\Rightarrow a-1\in\)Ư\(\left(3\right)=\left\{-3;-1;1;3\right\}\)
a-1 | -3 | -1 | 1 | 3 |
a | -2 | 0 | 2 | 4 |
\(\Rightarrow a\in\left\{-2;0;2;4\right\}\)
Ta có: \(2a+1⋮a-1\)
\(\Leftrightarrow2a-2+3⋮a-1\)
mà \(2a-2⋮a-1\)
nên \(3⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(3\right)\)
\(\Leftrightarrow a-1\in\left\{1;-1;3;-3\right\}\)
hay \(a\in\left\{2;0;4;-2\right\}\)
Vậy: \(a\in\left\{2;0;4;-2\right\}\)
2a+1⋮a−1
2a−2 2(a−1)+3⋮a−1
⇒⎨2(a−1)⋮a−1
3⋮a−1
Giải:
2a+1 ⋮ a-1
⇒2a-2+3 ⋮ a-1
⇒3 ⋮ a-1
⇒a-1 ∈ Ư(3)={-3;-1;1;3}
Ta có bảng:
a-1=-3 ➜a=-2
a-1=-1 ➜a=0
a-1=1 ➜a=2
a-1=3 ➜a=4
Vậy a ∈ {-2;0;2;4}
Chúc bạn học tốt!