Bài 2. Cấp số cộng

H24

Tìm số hạng tổng quát của cấp số cộng \(\left( {{c_n}} \right)\) có \({c_4} = 80\) và \({c_6} = 40\).

HM
22 tháng 9 2023 lúc 10:54

Giả sử cấp số cộng \(\left(c_n\right)\) có số hạng đầu \(c_1\) và công sai d.

Ta có: 

\(c_4=c_1+\left(4-1\right)d=c_1+3d\Leftrightarrow c_1+3d=80\left(1\right)\\ c_6=c_1+\left(6-1\right)d=c_1+5d\Leftrightarrow c_1+5d=40\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}c_1+3d=80\\c_1+5d=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c_1=140\\d=-20\end{matrix}\right.\)

Vậy số hạng tổng quát của cấp số cộng \(\left(c_n\right)\) là: 

\(c_n=c_1+\left(n-1\right)d=140+\left(n-1\right)\left(-20\right)=160-20\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết