Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

ML

Tìm nguyên hàm các hàm số lượng giác sau :

a) \(\int\frac{\cos2xdx}{\sin x\cos x}\)                               b)\(\int\frac{e^{2x}}{1-3e^{2x}}dx\)

c) \(\int\frac{2x-5}{x^2-5x+7}dx\)                           d) \(\int\frac{xdx}{x^2+1}\)                       e) \(\int\frac{dx}{\sin x}\)

PV
19 tháng 3 2016 lúc 21:36

Để tìm một số nguyên hàm ta có thể lưu ý và áp dụng nhận xetsau : nguyên hàm của một phân thức mà tử số của nó là vi phân của mẫu số là bằng logarit của đại lượng tuyệt đối của mẫu số :

\(\int\frac{u'dx}{u}=\int\frac{du}{u}=\ln\left|u\right|+C\)

a) \(\int\frac{\cos2x}{\sin x\cos x}dx=2\int\frac{\cos2x}{\sin2x}dx=\int\frac{d\left(\sin2x\right)}{\sin2x}=\ln\left|\sin2x\right|+C\)

b)\(\int\frac{e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{-6e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{d\left(1-3e^{2x}\right)}{1-3e^{2x}}=-\frac{1}{6}\ln\left|1-3e^{2x}\right|+C\)

c)\(\int\frac{2x-5}{x^2-5x+7}dx=\int\frac{d\left(x^2-5x+7\right)}{x^2-5x+7}=\ln\left|x^2-5x+7\right|+C\)

                                                \(=\ln\left(x^2-5x+7\right)+C\)

d)\(\int\frac{xdx}{x^2+1}=\frac{1}{2}\int\frac{2xdx}{x^2+1}=\frac{1}{2}\int\frac{d\left(x^2+1\right)}{x^2+1}=\frac{1}{2}\ln\left(x^2+1\right)+C\)

e) \(\int\frac{dx}{\sin x}=\int\frac{\sin xdx}{\sin^2x}=\int\frac{d\left(\cos x\right)}{\cos^2x-1}=\frac{1}{2}\ln\frac{1-\cos x}{1+\cos x}+C\)

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
BD
Xem chi tiết
PV
Xem chi tiết
LP
Xem chi tiết
DQ
Xem chi tiết
HC
Xem chi tiết
NN
Xem chi tiết
BD
Xem chi tiết
NB
Xem chi tiết