Ôn tập toán 6

DS

Tìm n thuộc N để

B=10n-3/4n-10 đạt GTLN

SG
22 tháng 9 2016 lúc 22:31

Để B đạt GTLN thì 2B đạt GTLN

Ta có:

\(2B=2.\frac{10n-3}{4n-10}=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=\frac{5.\left(4n-10\right)+44}{4n-10}\)

                                      \(2B=\frac{5.\left(4n-10\right)}{4n-10}+\frac{44}{4n-10}=5+\frac{44}{4n-10}\)

Để 2B đạt GTLN thì \(\frac{44}{4n-10}\) đạt GTLN

=> 4n - 10 đạt GTNN

+ Với x < 3 thì 4n - 10 < 0, khi đó \(\frac{44}{4n-10}< 0\)

+ Với \(x\ge3\) thì 4n - 10 > 0, khi đó \(\frac{44}{4n-10}\) > 0 

Mà n nhỏ nhất => n = 3 

Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN

Thay n = 3 vào B ta có:

\(B=\frac{10.3-3}{4.3-10}=\frac{30-3}{12-10}=\frac{27}{2}\)

Vậy với n = 3 thì B đạt GTNN = \(\frac{27}{2}\)

Bình luận (1)

Các câu hỏi tương tự
LC
Xem chi tiết
DC
Xem chi tiết
NK
Xem chi tiết
KK
Xem chi tiết
LT
Xem chi tiết
DS
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết