Tìm MIN. MAX
\(F=\dfrac{x}{\left(x+10\right)^2}\)
Rút gọn:
\(\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x+1}-\dfrac{x}{1+2x+x^2}\right):\dfrac{2x^3+3x^2}{x+1}\right]:\dfrac{3x+1}{x^3+x^2}:\left(x-1\right)\)
Rút gọn:
\(A=\left[\left(\dfrac{3}{1+x}-\dfrac{x}{x^2+x+1}\right):\dfrac{2x^2+3x}{x+1}+\dfrac{3}{x+1}\right]\cdot\dfrac{x^2+x}{1+3x}\)
\(B=\left[\dfrac{a}{2a-6}-\dfrac{a^2}{a^2-9}+\dfrac{a}{2a-9}\cdot\left(\dfrac{3}{a}+\dfrac{1}{3-a}\right)\right]:\dfrac{a^2-5a-6}{18-2a^2}\)
a. Tìm Min A = \(\left(2x+\frac{1}{3}\right)4-1\)
b. Tìm Max B = \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Giúp Thảo nhé !
Tìm Min
M = \(2x^2+9y^2-16x-12y+2017\)
Tìm Max:
N = \(-x^2-4y^2+6y+2x-2016\)
Cho các đơn thức sau:\(A=\dfrac{-1}{2}x^2y.\left(1\dfrac{1}{2}\right)xy\);\(B=\left(-xy\right)^2y\);\(C=\left(\dfrac{-1}{2}y\right)^3x^2\);\(D=\left(-x^2y^2\right).\left(\dfrac{-2}{3}x^3y\right)\).
a)Trong các đơn thức trên đơn thức nào đồng dạng.
b)Xác định dấu của x và y biết các đơn thức A;C;D có cùng giá trị dương.
c)Chứng minh rằng trong ba đơn thức A;B;D có ít nhất một đơn thức âm với mọi x,y khác 0.
d)Tính giá trị của D tại \(x=\dfrac{5}{2};y=\dfrac{-4}{25}.\)
Cho các đơn thức:
\(A=\dfrac{1}{3}xy.\left(-\dfrac{2}{5}xy^2z\right)^2\) \(B=\dfrac{4}{7}xy^2z.0,5yz\) \(C=\left(-\dfrac{2}{3}\right)^2x^2y^2.25yz\left(-\dfrac{1}{4yz}\right)^2\)
\(D=-4y.\left(xy\right)^3.\dfrac{1}{8}\left(-x\right)^5\) \(E=\left(-\dfrac{2}{3}y\right)^3\left(-x^2y\right)^5\left(-3x\right)^2\)
a)Thu gọn,tìm bậc,hệ số,phần biến của các đơn thức trên.
b)CMR trong ba đơn thức A;B;C có ít nhất một đơn thức dương với x;y;z khác 0.
c)So sánh giá trị của D và E tại x=-1 và y=\(\dfrac{1}{2}\).
d)Với giá trị nào của x và y thì D nhận giá trị dương.
Tìm x;y;z
\(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\) và \(2\left(x^2\right)+2\left(y^2\right)-z^2=1\)
Tìm x biết
a) \(-x^2.\left(x^2-4\right)=-25.\left(x^2-4\right)\)
b) \(x^2.\left(2\left|x\right|-3\right)=\left|x^2\right|.\left(2\left|x\right|-3\right)\)
c) \(\left(2x-6\right)^2=\left(3x+1\right)^{15}\)
d) \(2\left|x-3\right|-\left|4-x\right|=1\)