a) A = (2x - 1)(x - 3)
=2x2-6x-x+3
=2x2-7x+3
\(=2\left(x^2-\frac{7x}{2}+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{7x}{2}+\frac{49}{16}-\frac{50}{16}\right)\)
\(=2\left(x-\frac{7}{4}\right)^2-\frac{25}{8}\ge0-\frac{25}{8}=-\frac{25}{8}\)
Dấu = khi \(x=\frac{7}{4}\)
Vậy MinA\(=-\frac{25}{8}\) khi \(x=\frac{7}{4}\)
b) B = (1 - 2x)(x - 3)
=x-3-2x2+6x
=-2x2+7x-3
\(=-2\left(x^2-\frac{7x}{2}+\frac{3}{2}\right)\)
\(=-2\left(x^2-\frac{7x}{2}+\frac{49}{16}-\frac{50}{16}\right)\)
\(=\frac{25}{8}-2\left(x-\frac{7}{4}\right)^2\le\frac{25}{8}-0=\frac{25}{8}\)
Dấu = khi \(x=\frac{7}{4}\)
Vậy MaxA\(=\frac{25}{8}\) khi \(x=\frac{7}{4}\)