Đặt \(\sqrt{x+2}+\sqrt{6-x}=t\left(2\sqrt{2}\le t\le4\right)\)
\(\Rightarrow\sqrt{\left(x+2\right)\left(6-x\right)}=\dfrac{t^2-8}{2}\)
Khi đó phương trình tương đương:
\(2m=f\left(t\right)=t^2+2t-8\)
Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)
\(\Leftrightarrow f\left(2\sqrt{2}\right)\le2m\le f\left(4\right)\)
\(\Leftrightarrow4\sqrt{2}\le2m\le16\Rightarrow2\sqrt{2}\le m\le8\)