Cho 2 phương trình ẩn x : \(x^2+\left(m-3\right)x-2m^2+3m=0\).Tìm m để phương trình đã cho có hai nghiệm phân biệt x\(_1\) ;x\(_2\) thỏa mãn \(\dfrac{x_1.x_2}{x_1+x_3}\)=\(-\dfrac{m^2}{2}\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)
Cho phương trình \(\left(a^2+b^2+c^2+1\right)x-\left(ab+bc+ca\right)=0\), \(\left(a,b,c\in R\right)\)
Nghiệm \(x_0\) của phương trình này thỏa mãn điệu kiện:
\(A.1\le x_0< 2\)
\(B.\left|x_0\right|\ge1\)
\(C.\left|x_0\right|< 1\)
D.\(0< x_0< 1\)
Tìm m để phương trình \(\left(x^2-4x\right)^2-3\left(x-2\right)^2+m=0\) có 4 nghiệm phân biệt
Tìm m để phương trình: \(mx^2-2\left(m+1\right)x+m+5=0\) có 2 nghiệm x1,x2 thỏa mãn x1<0<x2<2
Tìm điều kiện của m để phương trình \(\left(2x-1\right)\left(x^2-4x+2m-3\right)=0\) có ba nghiệm phân biệt cùng dương
tìm m để phương trình \(x^{2+}2\left(m-1\right)x+3m-2=0\) có 2 nghiệm trái dấu x1, x2 thỏa mãn \(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|\)
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2