Ôn thi vào 10

H24

tìm GTNN

\(x+\dfrac{4x+2}{2x-1}\)

MY
19 tháng 6 2021 lúc 15:51

với \(x\ge\dfrac{1}{2}\)(điều kiện chắc vậy)

A=\(x+\dfrac{4x+2}{2x-1}=\dfrac{x\left(2x-1\right)}{2x-1}+\dfrac{4x+2}{2x-1}\)

\(=\dfrac{2x^2-x+4x+2}{2x-1}=\dfrac{2x^2+3x+2}{2x-1}\)

\(=>2A=\)\(\dfrac{4x^2+6x+4}{2x-1}\)

\(=\dfrac{4x^2-4x+1+10x+3}{2x-1}\)

\(=\dfrac{\left(2x-1\right)^2+5\left(2x-1\right)+8}{2x-1}=2x-1+\dfrac{8}{2x-1}+5\)

\(\ge2\sqrt{8}+5\)

=>\(A\ge\dfrac{2\sqrt{8}+5}{2}=\sqrt{8}+\dfrac{5}{2}\)

Dấu"=" xảy ra<=>\(x=\dfrac{1}{2}\left(1+2\sqrt{2}\right)\)(TM)

Vậy min A=\(\sqrt{8}+\dfrac{5}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
UI
Xem chi tiết