Lời giải:
\(F=-16x^2-20x-100000\)
\(\Rightarrow -F=16x^2+20x+100000\)
\(\Rightarrow -F=(4x+\frac{5}{2})^2+\frac{399975}{4}\)
Vì \((4x+\frac{5}{2})^2\geq 0, \forall x\Rightarrow -F\geq 0+\frac{399975}{4}=\frac{399975}{4}\)
\(\Rightarrow F\leq \frac{-399975}{4}\)
Vậy \(F_{\max}=\frac{-399975}{4}\Leftrightarrow x=\frac{-5}{8}\)
------------
\(G=2x^2-4x=2(x^2-2x)=2(x^2-2x+1)-2\)
\(=2(x-1)^2-2\)
Vì \((x-1)^2\geq 0,\forall x\Rightarrow G\geq 2.0-2=-2\)
Vậy \(G_{\min}=-2\Leftrightarrow x-1=0\leftrightarrow x=1\)