Phân thức đại số

YN

Tìm GTNN; GTLN của các biểu thức sau:

a) A= x2 - 4x + 1

b) B= 5 - 8x - x2

c) C= 5x - x2

d) D= ( x - 1 )(x + 3)( x + 2 )( x + 6)

e) \(E=\dfrac{1}{x^2+5x+14}\)

f)\(F=\dfrac{2x^2+4x+10}{x^2+2x+3}\)

AH
26 tháng 12 2018 lúc 12:01

Câu a:
\(A=x^2-4x+1=(x^2-4x+4)-3\)

\(=(x-2)^2-3\geq 0-3=-3\)

Dấu "=" xảy ra khi $(x-2)^2=0$ hay $x=2$

Vậy GTNN của $A$ là $-3$ khi $x=2$

Câu b:

\(B=5-8x-x^2=21-(x^2+8x+16)\)

\(=21-(x+4)^2\leq 21-0=21\)

Dấu "=" xảy ra khi $(x+4)^2=0$ hay $x=-4$

Vậy GTLN của $B$ là $21$ khi $x=-4$

Bình luận (0)
AH
26 tháng 12 2018 lúc 12:05

Câu c:

\(C=5x-x^2=-(x^2-5x)=\frac{25}{4}-(x^2-5x+\frac{5^2}{2^2})\)

\(=\frac{25}{4}-(x-\frac{5}{2})^2\leq \frac{25}{4}-0=\frac{25}{4}\)

Dấu "=" xảy ra khi \((x-\frac{5}{2})^2=0\Leftrightarrow x=\frac{5}{2}\)

Vậy GTLN của $C$ là $\frac{25}{4}$ khi $x=\frac{5}{2}$

Câu d:

\(D=(x-1)(x+3)(x+2)(x+6)=[(x-1)(x+6)][(x+3)(x+2)]\)

\(=(x^2+5x-6)(x^2+5x+6)\)

\(=(x^2+5x)^2-6^2=(x^2+5x)^2-36\geq 0-36=-36\)

Dấu "=" xảy ra khi \((x^2+5x)^2=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)

Vậy GTNN của $D$ là $-36$ khi $x=0$ hoặc $x=-5$

Bình luận (0)
AH
26 tháng 12 2018 lúc 12:09

Câu e:
\(E=\frac{1}{x^2+5x+4}=\frac{1}{x^2+5x+\frac{25}{4}+\frac{31}{4}}=\frac{1}{(x+\frac{5}{2})^2+\frac{31}{4}}\)

\((x+\frac{5}{2})^2\geq 0, \forall x\Rightarrow (x+\frac{5}{2})^2+\frac{31}{4}\geq \frac{31}{4}\)

\(\Rightarrow E\leq \frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Vậy GTLN của $E$ là \(\frac{4}{31}\) tại \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Câu f:

\(F=\frac{2x^2+4x+10}{x^2+2x+3}=\frac{2(x^2+2x+3)+4}{x^2+2x+3}=2+\frac{4}{x^2+2x+3}\)

\(=2+\frac{4}{(x^2+2x+1)+2}=2+\frac{4}{(x+1)^2+2}\)

\((x+1)^2\geq 0\Rightarrow \frac{4}{(x+1)^2+2}\leq \frac{4}{2}=2\)

\(\Rightarrow F\leq 2+2=4\)

Vậy GTLN của $F$ là $4$ khi $x=-1$

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
LH
Xem chi tiết
BN
Xem chi tiết
NV
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
MC
Xem chi tiết
BO
Xem chi tiết