A=\(x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+11\ge11\) Vậy A có GTNN=11 khi x-2=0=>x=2. B=\(x\left(x-3x\right)=x^2\left(1-3\right)=-2x^2\) Vì \(x^2\ge0\Rightarrow-2x^2\le0\) . Vậy B không có GTNN, GTLN là 0.
\(C=x^2+y^2+4x+6y+20=x^2+4x+4+y^2+6y+9+7=\left(x+2\right)^2+\left(y+3\right)^2+7\)Vì \(\left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\) Vậy GTNN C=7 khi \(\left\{{}\begin{matrix}x+2=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)