Chương I - Căn bậc hai. Căn bậc ba

NH

Tim GTNN

A=4X2-X-2

B= \(\dfrac{2X^2+6X-3}{5}\)

C= X4+4X-1

D= 4X2+\(\dfrac{9}{X^2}\) với x khác 0

AH
14 tháng 8 2018 lúc 22:39

Lời giải:

a)

Ta có: \(A=4x^2-x-2=(2x)^2-2.2x.\frac{1}{4}x+(\frac{1}{4})^2-\frac{33}{16}\)

\(=(2x-\frac{1}{4})^2-\frac{33}{16}\)

\((2x-\frac{1}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\ge 0-\frac{33}{16}=-\frac{33}{16}\)

Vậy GTNN của $A$ là $\frac{-33}{16}$ khi $x=\frac{1}{8}$

b)

\(B=\frac{2x^2+6x-3}{5}=\frac{2(x^2+3x+\frac{9}{4})-\frac{15}{2}}{5}\)

\(=\frac{2(x+\frac{3}{2})^2-\frac{15}{2}}{5}\geq \frac{2.0-\frac{15}{2}}{5}=\frac{-3}{2}\)

Vậy \(B_{\min}=\frac{-3}{2}\Leftrightarrow (x+\frac{3}{2})^2=0\Leftrightarrow x=\frac{-3}{2}\)

Bình luận (0)
AH
14 tháng 8 2018 lúc 22:45

c)

\(C=x^4+4x-1\)

\(=x^4-2x^2+1+2x^2+4x-2\)

\(=(x^2-1)^2+2(x^2+2x+1)-4\)

\(=(x^2-1)^2+2(x+1)^2-4\)

\(=(x-1)^2(x+1)^2+2(x+1)^2-4=(x+1)^2[(x-1)^2+2]-4\)

Thấy rằng:

\((x+1)^2\geq 0; (x-1)^2+2>0\Rightarrow (x+1)^2[(x-1)^2+2]\geq 0\)

\(\Rightarrow C\geq 0-4=-4\)

Vậy $C_{\min}=-4$ khi \((x+1)^2=0\Leftrightarrow x=-1\)

d)

\(D=4x^2+\frac{9}{x^2}=(2x)^2+(\frac{3}{x})^2-2.2x.\frac{3}{x}+12\)

\(=(2x-\frac{3}{x})^2+12\geq 0+12=12\)

Vậy $D_{\min}=12$ khi \(2x-\frac{3}{x}=0\Leftrightarrow x=\pm \sqrt{\frac{3}{2}}\)

Bình luận (0)

Các câu hỏi tương tự
LG
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
GH
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
CA
Xem chi tiết
NP
Xem chi tiết
DN
Xem chi tiết