Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

HA

Tìm GTLN, GTNN:

a, \(y=4\sin^2x-4\sin x+3\).

b, \(y=\cos^2x+2\sin x+2\).

c, \(y=\sin^4x-2\cos^2x+1\).

AH
2 tháng 9 2023 lúc 20:46

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

Bình luận (0)
AH
2 tháng 9 2023 lúc 20:53

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

Bình luận (0)
AH
2 tháng 9 2023 lúc 21:01

c.

$y=\sin ^4x-2\cos ^2x+1=\sin ^4x-2(1-\sin ^2x)+1$

$=\sin ^4x+2\sin ^2x-1$

$=(\sin ^4x-1)+(2\sin ^2x-2)+2$

$=(\sin ^2x-1)(\sin ^2x+1)+2(\sin ^2x-1)+2$

$=(\sin ^2x-1)(\sin ^2x+3)+2$

Vì $\sin x\in [-1;1]$ nên $\sin ^2x\leq 1$

$\Rightarrow (\sin ^2x-1)(\sin ^2x+3)\leq 0$

$\Rightarrow y=(\sin ^2x-1)(\sin ^2x+3)+2\leq 2$

Vậy $y_{\max}=2$

------------------------------------------

$y=\sin ^4x+2\sin ^2x-1=\sin ^2x(\sin ^2x+2)-1$

Vì $\sin ^2x\geq 0$ nên $\sin ^2x(\sin ^2x+2)\geq 0$

$\Rightarrow y=\sin ^2x(\sin ^2x+2)-1\geq 0-1=-1$
Vậy $y_{\min}=-1$

 

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
HN
Xem chi tiết