Đại số lớp 7

NP

Tìm GTLN của A = \(\left|x-1004\right|-\left|x+1003\right|\)

HQ
27 tháng 3 2017 lúc 21:08

Giải:

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:

\(\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=2007\)

Dấu "=" xảy ra khi \(\Leftrightarrow x=-1013\)

Vậy \(MAX_A=2007\) tại \(x=-1013\)

Bình luận (0)
TH
27 tháng 3 2017 lúc 21:11

Ta có:

\(\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x+1003\right|\)

hay \(A\le\left|-1\right|\)

\(\Rightarrow A\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1004\ge0\\x+1003\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1004\le0\\x+1003\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1004\\x\le1003\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1004\\x\ge1003\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x\ge1004\\x\le1003\end{matrix}\right.\)

=> vô lí.

TH2: \(\left\{{}\begin{matrix}x\le1044\\x\ge1003\end{matrix}\right.\)

\(\Rightarrow2013\le x\le2014\) (thỏa mãn)
Vậy với \(2013\le x\le2014\) thì A đạt GTLN và khi dó A=1.

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
BH
Xem chi tiết
LD
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
FA
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
LL
Xem chi tiết