Phép nhân và phép chia các đa thức

TN

Tìm GTLN

A = -3x2 + 6x - 4

B= -x2 - 4x - y2 + 2y

C = -x2 - 8x - y2 + 2

D = (x2 + 2)2 - 2(x2 - 2)(x2 + 2) - 10

E = -x4 + 35 - 3x2

F = -2x2 + 3x - 1

TH
27 tháng 8 2018 lúc 13:42

\(A=-3x^2+6x-4\)

\(A=-\left(3x^2-6x+4\right)\)

\(A=-3\left(x^2-2x+4\right)\)

\(A=-3\left(x^2-2x+1+3\right)\)

\(A=-3\left(x-1\right)^2-9\)

\(-3\left(x-1\right)^2\le0\) với mọi x

\(\Rightarrow-3\left(x-1\right)^2-9\le-9\)

\(\Rightarrow Amin=-9\Leftrightarrow x=1\)

\(B=-x^2-4x-y^2+2y\)

\(B=-x^2-4x-2-y^2+2y-1+3\)

\(B=-\left(x^2+4x+2\right)-\left(y^2-2y+1\right)+3\)

\(B=-\left(x+2\right)^2-\left(y-1\right)^2+3\)

\(-\left(x+2\right)^2\le0\) với mọi x

\(-\left(y-1\right)^2\le0\) với mọi y

\(\Rightarrow-\left(x+2\right)^2-\left(y-1\right)^2+3\le3\) với mọi x,y

\(\Rightarrow Bmin=3\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Sửa đề \(C=-x^2-8x-y^2+2y\)

\(C=-x^2-8x-16-y^2+2y-1+17\)

\(C=-\left(x^2+8x+16\right)-\left(y^2-2y+1\right)+17\)

\(C=-\left(x+4\right)^2-\left(y-1\right)^2+17\)

\(-\left(x+4\right)^2-\left(y-1\right)^2\le0\) với mọi x,y

\(\Rightarrow-\left(x+4\right)^2-\left(y-1\right)^2+17\le17\)

\(\Rightarrow Cmin=17\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)

\(D=\left(x^2+2\right)^2-2\left(x^2-2\right)\left(x^2+2\right)-10\)

\(D=\left(x^2+2\right)^2-2\left(x^2-2\right)\left(x^2+2\right)+\left(x^2-2\right)^2-\left(x^2-2\right)^2-10\)

\(D=\left(x^2+2-x^2-2\right)^2-\left(x^2-2\right)^2-10\)

\(D=-\left(x^2-2\right)^2-10\)

\(-\left(x^2-2\right)^2\le0\)

\(\Rightarrow-\left(x^2-2\right)^2-10\le-10\)

\(\Rightarrow Dmin=-10\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Bình luận (0)