\(A\left(x\right)=4x^2+6x+15\)
\(=4x^2+6x+\dfrac{9}{4}+\dfrac{51}{4}\)
\(=4\left(x^2+\dfrac{3x}{2}+\dfrac{9}{16}\right)+\dfrac{51}{4}\)
\(=4\left(x+\dfrac{3}{4}\right)^2+\dfrac{51}{4}\)
Dễ thấy: \(\left(x+\dfrac{3}{4}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\dfrac{3}{4}\right)^2\ge0\forall x\)
\(\Rightarrow A\left(x\right)=4\left(x+\dfrac{3}{4}\right)^2+\dfrac{51}{4}\ge\dfrac{51}{4}\forall x\)
Đẳng thức xảy ra khi \(4\left(x+\dfrac{3}{4}\right)^2=0\Rightarrow x=-\dfrac{3}{4}\)