Ôn tập toán 7

HA

Tìm giá trị nhỏ nhất của biểu thức sau:

A= I x-2010I+Ix-2011I

LF
17 tháng 9 2016 lúc 22:35

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2010\right|+\left|x-2011\right|\ge\left|x-2010+2011-x\right|=1\)

\(\Rightarrow A\ge1\)

Dấu = khi \(\left(x-2010\right)\left(x-2011\right)\ge0\)\(\Leftrightarrow2010\le x\le2011\)

\(\Rightarrow\begin{cases}\left(x-2010\right)\left(x-2011\right)\\2010\le x\le2011\end{cases}\)\(\Rightarrow\begin{cases}x=2010\\x=2011\end{cases}\)

Vậy MinA=1 khi x=2010 hoặc x=2011

Bình luận (0)