Violympic toán 7

TM

Tìm giá trị lớn nhất của biểu thức:

A=\(\left|x-2018\right|-\left|x-2017\right|\)

NH
9 tháng 12 2018 lúc 19:18

Với mọi x ta có :

\(A=\left|x-2918\right|-\left|x-2017\right|\)

\(\Leftrightarrow A\ge\left|x-2018-x+2017\right|\)

\(\Leftrightarrow A\ge\left|-1\right|\)

\(\Leftrightarrow A\ge1\)

Dấu "=" xảy ra

\(\Leftrightarrow\left|x-2018\right|\ge\left|x-2017\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2018\ge0\\x-2017\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2018< 0\\x-2017< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2018\\x\ge2017\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2018\\x< 2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge2018\\x< 2017\end{matrix}\right.\)

Vậy....

Bình luận (0)
H24
9 tháng 12 2018 lúc 19:40

Làm CTV bên olm chán rồi,qua hoc24 kiếm GP tí!Bạn Nguyễn Thanh Hằng lạc đề r,đề là tìm gtln (do bạn đánh ngược dấu)

Ta có:

\(A\le\left|x-2018-x-2017\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2018\right)\left(x-2017\right)\ge0\)

\(TH1:\left[{}\begin{matrix}x-2018\le0\\x-2017\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le2018\\x\le2017\end{matrix}\right.\Leftrightarrow x\le2017\)

TH2: \(\left[{}\begin{matrix}x-2018\ge0\\x-2017\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge2018\\x\ge2017\end{matrix}\right.\Leftrightarrow x\ge2018\)

Thử lại,dễ dàng loại TH2,vậy x =< 2017

Bình luận (6)

Các câu hỏi tương tự
DX
Xem chi tiết
TT
Xem chi tiết
KD
Xem chi tiết
TH
Xem chi tiết
AI
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
ML
Xem chi tiết
H24
Xem chi tiết