Tìm đkxđ để căn thức sau có nghĩa :
a) \(\frac{1}{2-\sqrt{x}}\)
b) \(\sqrt{-\frac{5}{x-4}}\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Tìm đkxđ của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\) - \(\sqrt[3]{2x-1}\)
tìm đkxđ của căn thức sau
\(\sqrt{2x^2+1}\)
Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A
Rút gọn biểu thức sau :( chú ý đặt ĐKXĐ trước khi trước khi thực hiện rút gọn)
a,P= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
b, D=\(\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x+1}}+\frac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)
1. Rút gon biểu thức chứa căn
\(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
2. Cho biểu thức \(P=\left(1+\dfrac{1}{\sqrt{x-1}}\right).\dfrac{1}{x-\sqrt{x}}\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm x để \(P.\sqrt{5+2\sqrt{6}}.\left(\sqrt{x}-1\right)^2=x-2005+\sqrt{2}+\sqrt{3}\)
3. Cho biểu thức \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(1+\dfrac{1}{\sqrt{x}}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tìm giá trị của x để \(\sqrt{A}>A\)
Cho biểu thức \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ :
b) Tìm giá trị của x để \(A=\frac{1}{3}\)
Tìm ĐKXĐ của các biểu thức :
a/ \(\frac{1}{\sqrt{2x-x^2}}\)
b/ \(\frac{1}{\sqrt{x-3}}+\frac{3x}{\sqrt{5-x}}\)
c/ \(\frac{1}{\sqrt{x^2-5x+6}}\)
d/ \(\sqrt{6x-1}+\sqrt{x+3}\)