Giải:
a) Để biểu thức có nghĩa thì:
\(\dfrac{8x}{x^2+1}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8x\ge0\\x^2+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8x\le0\\x^2+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
b) Để biểu thức có nghĩa thì:
\(\dfrac{x^2-1}{x^2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x^2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x^2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>0\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x>0\)
Vậy ...