Bài 1: Tính đơn điệu của hàm số

H24

Tìm điểm cực trị của mỗi hàm số sau:

a) \(y = {x^4} - 6{x^2} + 8x + 1\).

b) \(y = \frac{{3x + 5}}{{x - 1}}\).

H24
24 tháng 9 2024 lúc 14:00

a) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 4{x^3} - 12x + 8\).

Xét \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 1\end{array} \right.\)

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực đại tại điểm \(x =  - 2\).

b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y' = \frac{{ - 8}}{{{{\left( {x - 1} \right)}^2}}}\).

Nhận xét \(y' < 0{\rm{ }}\forall x \in D\)

Ta có bảng biến thiên sau:

Vậy hàm số không có điểm cực trị.

Bình luận (0)