Violympic toán 7

DH

Tìm các số x,y,z khác 0 biết: \(\frac{xy}{ay+bx}=\frac{yz}{cy+bz}=\frac{xz}{az+cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(a,b,c\ne0\right)\)

VT
10 tháng 1 2020 lúc 10:53

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Ta có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}.\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}.\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\left\{{}\begin{matrix}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ayz=cxy\\bxz=cxy\\bxz=ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}az=cx\\bz=cy\\bx=ay\end{matrix}\right.\left(2\right)\)

Thay (2) vào (1) ta được:

\(\frac{xy}{ay+ay}=\frac{yz}{bz+bz}=\frac{xz}{cx+cx}\)

\(\Rightarrow\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right).\)

\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{1.\left(x^2+y^2+z^2\right)}{4.\left(a^2+b^2+c^2\right)}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\left(4\right).\)

Từ (3) và (4)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2a}=\frac{1}{4}\\\frac{y}{2b}=\frac{1}{4}\\\frac{z}{2c}=\frac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{4}.2a\\y=\frac{1}{4}.2b\\z=\frac{1}{4}.2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{matrix}\right.\)

Vậy \(x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\left(x,y,z\ne0\right);\left(a,b,c\ne0\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DH
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
TH
Xem chi tiết
QD
Xem chi tiết
TH
Xem chi tiết
KT
Xem chi tiết
PA
Xem chi tiết
NJ
Xem chi tiết