Chương II - Hàm số bậc nhất

H24

Tìm các số nguyên a, b thỏa mãn \(\dfrac{5}{a+b\sqrt{2}}-\dfrac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)

TQ
21 tháng 11 2018 lúc 18:35

ĐK:\(a\ne0,b\ne0\)

Ta có \(\dfrac{5}{a+b\sqrt{2}}-\dfrac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\Leftrightarrow\dfrac{5\left(a-b\sqrt{2}\right)}{\left(a+b\sqrt{2}\right)\left(a-b\sqrt{2}\right)}-\dfrac{4\left(a+b\sqrt{2}\right)}{\left(a+b\sqrt{2}\right)\left(a-b\sqrt{2}\right)}+18\sqrt{2}=3\Leftrightarrow\dfrac{5a-5b\sqrt{2}-4a-4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=3\Leftrightarrow a-9b\sqrt{2}=\left(3-18\sqrt{2}\right)\left(a^2-2b^2\right)\Leftrightarrow a-9b\sqrt{2}=3a^2-6b^2-18a^2\sqrt{2}+36b^2\sqrt{2}\Leftrightarrow a-3a^2+6b^2=9b\sqrt{2}+36b^2\sqrt{2}-18a^2\sqrt{2}\Leftrightarrow a-3a^2+6b^2=9\sqrt{2}\left(b+4b^2-2a^2\right)\)Ta có a,b là số nguyên

Suy ra\(\left\{{}\begin{matrix}a-3a^2+6b^2=0\left(1\right)\\b+4b^2-2a^2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a-12a^2+24b^2=0\left(2\right)\\6b+24b^2-12a^2=0\left(3\right)\end{matrix}\right.\)

Trừ (2) cho (3) ta được \(4a-6b=0\Leftrightarrow b=\dfrac{2}{3}a\left(4\right)\)

Thay (4) vào (1) ta có \(a-3a^2+6b^2=0\Leftrightarrow a-3a^2+\dfrac{6.4}{9}a^2=0\Leftrightarrow a-\dfrac{1}{3}a^2=0\Leftrightarrow a^2-3a=0\Leftrightarrow a\left(a-3\right)=0\Leftrightarrow\)\(\left\{{}\begin{matrix}a=0\\a=3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}b=0\left(ktm\right)\\b=1\left(tm\right)\end{matrix}\right.\)

Vậy (a;b)=(3;1)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TP
Xem chi tiết
NP
Xem chi tiết
TH
Xem chi tiết
VQ
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
AP
Xem chi tiết