Ôn tập toán 6

H24

Tìm các số nguyên a, b, c, d biết:

\(\left\{{}\begin{matrix}a+b+c+d=1\\a+c+d=2\\a+b+d=3\\a+b+c=4\end{matrix}\right.\)

NN
15 tháng 8 2017 lúc 15:44

Giải:

Ta có:

\(\left(a+b+c+d\right)-\left(a+c+d\right)._{\left(1\right)}\)

\(=a+b+c+d-a-c-d.\)

\(=\left(a-a\right)+\left(c-c\right)+\left(d-d\right)+b.\)

\(=0+0+0+b=b.\)

Thay số vào \(_{\left(1\right)}\)\(\Rightarrow1-2=b\Rightarrow b=-1\in Z.\)

\(\left(a+b+c+d\right)-\left(a+b+d\right)._{\left(2\right)}\)

\(=a+b+c+d-a-b-d.\)

\(=\left(a-a\right)+\left(b-b\right)+\left(d+d\right)+c.\)

\(=0+0+0+c=c.\)

Thay số vào \(_{\left(2\right)}\)\(\Rightarrow1-3=c\Rightarrow c=-2\in Z.\)

\(\left(a+b+c+d\right)-\left(a+b+c\right)_{\left(3\right)}.\)

\(=a+b+c+d-a-b-c.\)

\(=\left(a-a\right)+\left(b-b\right)+\left(c-c\right)+d.\)

\(=0+0+0+d=d.\)

Thay số vào \(_{\left(3\right)}\)\(\Rightarrow1-4=d\Rightarrow d=-3\in Z.\)

\(\Rightarrow a+b+c+d=1.\)

\(a+\left(-1\right)+\left(-2\right)+\left(-3\right)=1.\)

\(\Rightarrow a=1-\left(-1\right)-\left(-2\right)-\left(-3\right).\)

\(\Rightarrow a=1+1+2+3=7\in Z.\)

Vậy \(\left\{a;b;c;d\right\}=\left\{7;-1;-2;-3\right\}.\)

Bình luận (1)
KL
15 tháng 8 2017 lúc 15:48

Do a + b + c + d = 1 mà a + c + d = 2
=> b = 1 - 2 = -1
=> c = 1 - 3 = -2
=> d = 1 - 4 = -3
=> a = 1 - (-1 - 2 - 3) = 7
@Valentine

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
TH
Xem chi tiết
PA
Xem chi tiết
CS
Xem chi tiết
TT
Xem chi tiết
KK
Xem chi tiết
H24
Xem chi tiết
DQ
Xem chi tiết
CD
Xem chi tiết