Bài 2: Giới hạn của hàm số

TT

Tìm các giới hạn sau:

a) \(\lim\limits_{h\rightarrow0}\dfrac{2\left(x+h\right)^3-2x^3}{h}\)

b) \(\lim\limits_{x\rightarrow1}\dfrac{\left(x+x^2+...+x^{2021}\right)-2021}{x-1}\)

HH
24 tháng 1 2021 lúc 12:16

a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)

\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)

b/ Xet day :\(S=x+x^2+....+x^{2021}\)

Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)

 

 

 

Bình luận (0)
HH
24 tháng 1 2021 lúc 12:35

Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi

Xet day: \(S=x+x^2+...+x^{2021}\)

\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)

L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)

Is that true :v?

 

Bình luận (0)
HH
24 tháng 1 2021 lúc 17:36

Cau a co the xai L'Hospital cung ra:

L'Hospital: 

\(...=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\dfrac{6h^2+12xh+6x^2+12xh+6h^2}{1}=6x^2\)

 

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết