\(x^2-y^{2^{ }}-2y-1=12\Leftrightarrow x^2-\left(y+1\right)^2=12\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-y-1\right)\inƯ\left(12\right)^+\)
Vì \(x\) , \(y>0\) \(\Rightarrow\) \(x+y+1>x-y-1\)
và có cùng tính chất chẵn lẻ
\(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=2\\x+y+1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
Vây \(\left(x;y\right)=\left(5;2\right)\)