Lời giải:
Ta có:
\((a-1)^2+(b-1)^2=\overline{ab}\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1=10a+b\)
\(\Leftrightarrow a^2-12a+b^2-3b+2=0(*)\)
\(\Leftrightarrow a^2=12a-2-b(b-3)\)
Vì $12a$ chẵn, $2$ chẵn , $b,b-3$ khác tính chẵn lẻ nên $b(b-3)$ chẵn. Do đó $a^2$ phải chẵn hay $a$ chẵn.
\(\Rightarrow a\in \left\{2;4;6;8\right\}\)
Nếu \(a=2\):
Thay vào $(*)$: \(\Rightarrow b^2-3b-18=0\)
\(\Leftrightarrow (b-6)(b+3)=0\Rightarrow b=6\)
Nếu $a=4$:
Thay vào $(*)\Rightarrow b^2-3b-30=0$
$\Delta=9+4.30$ không phải số chính phương nên pt không có nghiệm tự nhiên (loại)
Nếu $a=6;8$
Thay vào $(*)$ và tương tự như trên ta không thu được $b$ thỏa mãn (loại)
Vậy $a=2; b=6$
Lời giải:
Ta có:
\((a-1)^2+(b-1)^2=\overline{ab}\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1=10a+b\)
\(\Leftrightarrow a^2-12a+b^2-3b+2=0(*)\)
\(\Leftrightarrow a^2=12a-2-b(b-3)\)
Vì $12a$ chẵn, $2$ chẵn , $b,b-3$ khác tính chẵn lẻ nên $b(b-3)$ chẵn. Do đó $a^2$ phải chẵn hay $a$ chẵn.
\(\Rightarrow a\in \left\{2;4;6;8\right\}\)
Nếu \(a=2\):
Thay vào $(*)$: \(\Rightarrow b^2-3b-18=0\)
\(\Leftrightarrow (b-6)(b+3)=0\Rightarrow b=6\)
Nếu $a=4$:
Thay vào $(*)\Rightarrow b^2-3b-30=0$
$\Delta=9+4.30$ không phải số chính phương nên pt không có nghiệm tự nhiên (loại)
Nếu $a=6;8$
Thay vào $(*)$ và tương tự như trên ta không thu được $b$ thỏa mãn (loại)
Vậy $a=2; b=6$