Violympic toán 8

DN

Tìm a,b biết

\(\left(\text{a}-1\right)^2+\left(b-1^2\right)=\overline{\text{a}b}\)

AH
18 tháng 6 2019 lúc 11:49

Lời giải:

Ta có:
\((a-1)^2+(b-1)^2=\overline{ab}\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1=10a+b\)

\(\Leftrightarrow a^2-12a+b^2-3b+2=0(*)\)

\(\Leftrightarrow a^2=12a-2-b(b-3)\)

Vì $12a$ chẵn, $2$ chẵn , $b,b-3$ khác tính chẵn lẻ nên $b(b-3)$ chẵn. Do đó $a^2$ phải chẵn hay $a$ chẵn.

\(\Rightarrow a\in \left\{2;4;6;8\right\}\)

Nếu \(a=2\):

Thay vào $(*)$: \(\Rightarrow b^2-3b-18=0\)

\(\Leftrightarrow (b-6)(b+3)=0\Rightarrow b=6\)

Nếu $a=4$:

Thay vào $(*)\Rightarrow b^2-3b-30=0$

$\Delta=9+4.30$ không phải số chính phương nên pt không có nghiệm tự nhiên (loại)

Nếu $a=6;8$

Thay vào $(*)$ và tương tự như trên ta không thu được $b$ thỏa mãn (loại)

Vậy $a=2; b=6$

Bình luận (0)
AH
4 tháng 7 2019 lúc 16:42

Lời giải:

Ta có:
\((a-1)^2+(b-1)^2=\overline{ab}\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1=10a+b\)

\(\Leftrightarrow a^2-12a+b^2-3b+2=0(*)\)

\(\Leftrightarrow a^2=12a-2-b(b-3)\)

Vì $12a$ chẵn, $2$ chẵn , $b,b-3$ khác tính chẵn lẻ nên $b(b-3)$ chẵn. Do đó $a^2$ phải chẵn hay $a$ chẵn.

\(\Rightarrow a\in \left\{2;4;6;8\right\}\)

Nếu \(a=2\):

Thay vào $(*)$: \(\Rightarrow b^2-3b-18=0\)

\(\Leftrightarrow (b-6)(b+3)=0\Rightarrow b=6\)

Nếu $a=4$:

Thay vào $(*)\Rightarrow b^2-3b-30=0$

$\Delta=9+4.30$ không phải số chính phương nên pt không có nghiệm tự nhiên (loại)

Nếu $a=6;8$

Thay vào $(*)$ và tương tự như trên ta không thu được $b$ thỏa mãn (loại)

Vậy $a=2; b=6$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
ON
Xem chi tiết
H24
Xem chi tiết
IJ
Xem chi tiết
NA
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết