\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\\ =\frac{\left(3+2\sqrt{3}\right)\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\frac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}-\left(2+\sqrt{3}\right)\)
\(=\frac{3\sqrt{3}+6}{3}+\frac{2\sqrt{2}-2+2-\sqrt{2}}{2-1}-\left(2+\sqrt{3}\right)\)
=\(\frac{3\sqrt{3}+6+6\sqrt{2}-3\sqrt{2}-6-3\sqrt{3}}{3}\)
=\(\frac{3\sqrt{2}}{3}=\sqrt{2}\)