Violympic toán 8

BA

Thực hiện phép tính và rút gọn:
a) \(\dfrac{x-2}{6x^2-6x}-\dfrac{1}{4x^2-4}\)
b) \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{6x^3+6}:\dfrac{x^2-1}{4x^2-4x+4}\)

AH
29 tháng 12 2018 lúc 16:48

Lời giải:

a)

\(\frac{x-2}{6x^2-6x}-\frac{1}{4x^2-4}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x^2-1)}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x-1)(x+1)}\)

\(=\frac{2(x+1)(x-2)}{12x(x-1)(x+1)}-\frac{3x}{12x(x-1)(x+1)}=\frac{2(x+1)(x-2)-3x}{12x(x-1)(x+1)}\)

\(=\frac{2x^2-5x-4}{12x(x-1)(x+1)}=\frac{2x^2-5x-4}{12x^3-12x}\)

b) ĐK: \(x\neq \pm 1\)

\(\frac{(x+1)(x^2-2x+1)}{6x^3+6}:\frac{x^2-1}{4x^2-4x+4}\)

\(=\frac{(x+1)(x-1)^2}{6(x^3+1)}.\frac{4x^2-4x+4}{x^2-1}\)

\(=\frac{4(x+1)(x-1)^2(x^2-x+1)}{6(x+1)(x^2-x+1)(x^2-1)}\)

\(=\frac{2(x-1)}{3(x+1)}\)

Bình luận (1)

Các câu hỏi tương tự
NS
Xem chi tiết
DH
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết