Ôn tập toán 8

DN

Thực hiện phép cộng :

\(\frac{x^2}{x^2-4}+\frac{1}{x+2}+\frac{2}{2-x}\)

 

DV
28 tháng 6 2016 lúc 21:24

ĐKXĐ\(\begin{cases}x^2-4\ne0\\x+2\ne0\\2-x\ne0\end{cases}\)<=>\(\begin{cases}x\ne-2\\x\ne2\end{cases}\)

Với \(x\ne-2,x\ne2\) ta có

        \(\frac{x^2}{x^2-4}+\frac{1}{x+2}+\frac{2}{2-x}\)=\(\frac{x^2}{\left(x+2\right)\left(x-2\right)}+\frac{1}{x+2}-\frac{2}{x-2}\)

      =\(\frac{x^2}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\)

     =\(\frac{x^2+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\)=\(\frac{x^2-x+6}{\left(x+2\right)\left(x-2\right)}\)

     =\(\frac{\left(x+2\right)\left(x-3\right)}{\left(x+2\right)\left(x-2\right)}\)=\(\frac{x-3}{x-2}\)

 

      

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
VN
Xem chi tiết
HD
Xem chi tiết
YN
Xem chi tiết