Thu gọn :
A = \(\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
\(B=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+....+\dfrac{1}{2^{99}}\)
So sánh B với 50
Cho \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+................+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\) và \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+..........+\dfrac{48}{2}+\dfrac{49}{1}\)
Tính \(\dfrac{S}{P}\)
Help me!!!!!!!!!!!
Tính giá trị biểu thức :
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+\left(\dfrac{1}{6}+\dfrac{2}{6}+\dfrac{3}{6}+\dfrac{4}{6}+\dfrac{5}{6}\right)-\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\right)+...+\left(100+...+\dfrac{99}{100}\right)\)
Bài 1:
Cho A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
Chứng minh A<2
Bài 2:
Tính tổng: S=\(3+\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\)
Giúp mình nha
So sánh
\(A=\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+...+\dfrac{100}{2^{201}}\)
và \(B=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{100^3}\)
1: rút gọn rồi tính
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right)\) : \(\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
2: tìm x: \(3\cdot\left(4-x\right)+\left(x+2\right)\cdot\left(1+2x\right)=7\cdot\left(1+x\right)-2x\cdot\left(2-x\right)\)
3: tìm x: \(\dfrac{2\cdot\left(1+x\right)}{3}-\dfrac{5\cdot\left(2-x\right)}{6}=1\dfrac{1}{3}-\dfrac{3\cdot\left(2x+3\right)}{4}-1\dfrac{1}{2}\cdot\left(x+1\right)\)
4: cho a= \(3+3^{2^3}+3^3+3^4+...+3^{360}\)
tính:
\(\dfrac{2}{5}x\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}x\dfrac{1}{3}\)
2)\(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\)
3)\(\left[6+\left(\dfrac{1}{2^{ }}\right)^3-\left|-\dfrac{1}{2}\right|\right]:\dfrac{3}{12}\)
4)\(\dfrac{18}{37}+\dfrac{8}{24}+\dfrac{19}{37}-1\dfrac{23}{24}+\dfrac{2}{3}\)
5) \(\left(-2\right)^3x\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
6)\(\left(\dfrac{2}{5}\right)^2+5\dfrac{1}{2}x\left(45-2\right)+\dfrac{23}{-4}\)
7)\(\dfrac{4}{9}-19\dfrac{1}{3}-\dfrac{4}{9}x39\dfrac{1}{3}\)
8)\(\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2x\left(-\dfrac{1}{2}\right)^2\)
9)\(125\%x\left(-\dfrac{1}{2}\right)^3:\left(1\dfrac{5}{16}-1,5\right)+2008^0\)
giúp mình nha mai mình học rùi
CMR: S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2016}{4^{2016}}+\dfrac{2017}{4^{2017}}\)< \(\dfrac{1}{2}\)