Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

H24

Tam giác vuông có cạnh huyền bằng 5 cm có thể có diện tích lớn nhất bằng bao nhiêu?

H24
28 tháng 10 2024 lúc 6:59

Đặt một cạnh góc vuông là x (x > 0) thì cạnh còn lại là \(\sqrt {25 - {x^2}} \)

Diện tích tam giác vuông là: \(f(x) = \frac{{1}}{2} x\sqrt {25 - {x^2}} \)

Tập xác định: \(D = (0; 5 )\)

\(f'(x) = \frac{{1}}{2}\sqrt {25 - {x^2}}  - \frac{{1}}{2}. \frac{{{x^2}}}{{\sqrt {25 - {x^2}} }}\)

Tập xác định mới: \({D_1} = (0; 5 )\)

\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\sqrt {2} }}{2}\\x =  - \frac{{5\sqrt {2} }}{2}(loại)\end{array} \right.\)

Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D f(x) = f(\frac{{5\sqrt {2} }}{2}) = \frac{25}{4}\).

Vậy diện tích lớn nhất của tam giác là \(\frac{25}{4}\).

Bình luận (0)