Bài 2: Tỉ số lượng giác của góc nhọn

SK

Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minh rằng : Với góc nhọn \(\alpha\) tùy ý, ta có :

a) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)

   \(cotg\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)

   \(tg\alpha.cotg\alpha=1\)

b) \(\sin^2\alpha+\cos^2\alpha=1\)

Gợi ý : Sử dụng định lí Pytago

 

TB
24 tháng 4 2017 lúc 13:56

Hướng dẫn giải:

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khá

Bình luận (0)
ND
24 tháng 4 2017 lúc 13:56

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.



Bình luận (0)
NL
24 tháng 4 2017 lúc 13:56

2016-11-05_155403

Xét tam giác ABC vuông tại A, có góc B = α

a) 2016-11-05_1555272016-11-05_1555502016-11-05_155620

d) Tam giác ABC vuông tại A nên theo định lý pytago có:

2016-11-05_155801

Vậy: sin²a + cos²a = 1

Bình luận (0)
LV
24 tháng 4 2017 lúc 13:56

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Bình luận (1)

Các câu hỏi tương tự
DB
Xem chi tiết
SK
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
SK
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết