\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{2\sqrt{2}+3.2+3\sqrt{2}+1}-\sqrt[3]{2\sqrt{2}-3.2+3\sqrt{2}-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\sqrt{2}+1=2\)
\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{2\sqrt{2}+3.2+3\sqrt{2}+1}-\sqrt[3]{2\sqrt{2}-3.2+3\sqrt{2}-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\sqrt{2}+1=2\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}-\sqrt{7}}\)
b. \(\dfrac{5}{2-\sqrt{3}-\sqrt{5}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}-\sqrt{2}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}-\sqrt{7}}\)
b. \(\dfrac{5}{2-\sqrt{3}-\sqrt{5}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}-\sqrt{2}}\)
Không dùng máy tính hãy so sánh:
\(A=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
* Thực hiện phép tính.
a.\(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b.\(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c.\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right).\dfrac{1}{2-\sqrt{5}}\)
d.\(\sqrt{\left(2-\sqrt{5}\right)^2-\sqrt{5}}\)
Kỹ thuật nhân thêm \(\sqrt{2}\)
P = \(\dfrac{\sqrt{7-3\sqrt{5}.\left(7+3\sqrt{5}\right)}}{3\sqrt{10}+7\sqrt{2}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{7}}\)
b. \(\dfrac{5}{1-\sqrt{2}-\sqrt{3}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}+\sqrt{2}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{7}}\)
b. \(\dfrac{5}{1-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}+\sqrt{2}}\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)