\(\sqrt{3}\)= \(\sqrt{3}\)
theo mình là vậy, chúc bạn học tốt
\(\sqrt{3}\)= \(\sqrt{3}\)
theo mình là vậy, chúc bạn học tốt
Tính:
a) \(\sqrt{27}+\sqrt{75}-\sqrt{\dfrac{1}{3}}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
c) \(\dfrac{3}{\sqrt{7}+\sqrt{2}}+\dfrac{2}{3+\sqrt{7}}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
Tính \(S=\dfrac{4+\sqrt{3}}{1+\sqrt{3}}+\dfrac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
Rút gọn:
\(B=\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
\(C=\dfrac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
Bài 1Trong các số sau đây số nào bằng \(\dfrac{3}{5}\)
a,\(\sqrt{\dfrac{3^2}{5^2}}\)
b,\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
c,\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}\)
Bài 2
a, \(x=\sqrt{3}+\sqrt{6}\)
\(y=2\sqrt{3}\)
b,\(x=\sqrt{3}+\sqrt{6}\)
\(y=\sqrt{2}+\sqrt{7}\)
c,\(x=-\dfrac{1}{2}\sqrt{\dfrac{1}{3}}\)
\(y=-\dfrac{1}{3}\sqrt{\dfrac{1}{2}}\)
Bài 3
\(a,\sqrt{x}-1=4\)
\(b,\sqrt{\left(x-1\right)^4}=16\)
Rút gọn:
\(A=\left[\dfrac{2\left(x+y\right)}{\sqrt{x^3}-2\sqrt{2y^3}}-\dfrac{\sqrt{x}}{x+\sqrt{2xy}+2y}\right].\left[\dfrac{x\sqrt{x}+2\sqrt{2y^3}}{2y+\sqrt{2xy}}-\sqrt{x}\right]\)
Chứng tỏ
\(a,\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6
}\)
\(b,\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
c,\(\sqrt{5}+\sqrt{10}>5,3\)
Tính:
\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)
\(\sqrt{x}\)=1
\(\sqrt{x}\)=3
\(\sqrt{x}\)=5
\(\sqrt{x}\)=7
\(\sqrt{x}\)=9
\(\sqrt{x+1}\)=11
so sánh: \(2\sqrt{7}\) và \(3\sqrt{3}\)
\(6\sqrt{2}\) và \(5\sqrt{3}\)
\(\sqrt{31}-\sqrt{13}\) và \(6-\sqrt{11}\)
(\(\dfrac{\text{3}}{\text{2}}\).\(\sqrt[]{\dfrac{\text{4}}{\text{25}}+}\)3.\(\sqrt[]{\text{0,04}}\)):\(\sqrt[]{\dfrac{\text{9}}{\text{64}}}\)