Violympic toán 7

TD

Số tự nhiên x thỏa mãn:

B = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)

là x = .....

Trình bày cách giải cụ thể ra nha!

LF
31 tháng 12 2016 lúc 11:38

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)

\(\Rightarrow\frac{1}{2}\left[\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}\right]=\frac{16}{17}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{17}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{17}\Rightarrow x+2=17\Rightarrow x=15\)

Bình luận (2)
NT
31 tháng 12 2016 lúc 12:02

\(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)

Ta có:

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{8}{17}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{17}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{17}\)

\(\Rightarrow x+2=17\)

\(\Rightarrow x=15\)

Vậy \(x=15\)

Bình luận (0)
DL
31 tháng 12 2016 lúc 12:11

xin lưu ý, h24 rất hoan nghêng các bn có cách giải khác so với ng đã giải để làm phong phú kiến thức nhân loại nhưng k chào đón cách giải giống hệt bn đã giải vì tạo sự nhàm chán

Bình luận (19)
LF
31 tháng 12 2016 lúc 11:34

đề sai

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DQ
Xem chi tiết
TH
Xem chi tiết
HP
Xem chi tiết
MN
Xem chi tiết
TD
Xem chi tiết
TM
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết