Violympic toán 7

DQ

1,Giá trị x thỏa mãn : \(\frac{x}{-8}=\frac{-18}{x}\)

2, Tập hợp giá trị x nguyên thỏa mãn : | 2x-7| + | 2x + 1 | \(\le\) 8

3,Cho \(\frac{a}{b}=\frac{2,1}{2,7}\) ; 5a- 4b = -1 . Giá trị \(\left(a-b\right)^2\)

4, Cho \(\frac{a}{b}=\frac{9,6}{12,8};a^2+b^2=25\) . Giá trị | a + b| là ......

NT
24 tháng 12 2016 lúc 19:46

Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)

\(\Rightarrow x^2=144\)

\(\Rightarrow x=\pm12\)

Vậy \(x=\pm12\)

Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)

+) \(\frac{a}{7}=1\Rightarrow a=7\)

+) \(\frac{b}{9}=1\Rightarrow b=9\)

\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)

Vậy \(\left(a-b\right)^2=4\)

Bài 4:

Giải:

Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\)

\(\Rightarrow a=3k,b=4k\)

\(a^2+b^2=25\)

\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)

\(\Rightarrow9.k^2+16.k^2=25\)

\(\Rightarrow25k^2=25\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow a=3;b=4\)

+) \(k=-1\Rightarrow a=-3;b=-4\)

\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)

Vậy \(\left|a+b\right|=7\)

 

Bình luận (0)
TH
31 tháng 12 2016 lúc 17:49

Áp dụng BĐT

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:

\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)

\(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TH
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
OD
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết