Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
giải pt: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
Thực hiện phép tính:
\(a,\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(b,\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
Cho 2 phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với phương trình nào của m thì 2 phương trình đã cho tương đương
Cho hai phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với giá trị nào của m thì 2 phương trình đã cho tương đương
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3