\(\left\{{}\begin{matrix}2^{90}=\left(2^{10}\right)^9=1024^9\\5^{36}=\left(5^4\right)^9=625^9\end{matrix}\right.\)
\(1024^9>625^9\Leftrightarrow2^{90}>5^{36}\)
\(\left\{{}\begin{matrix}2^{27}=\left(2^3\right)^9=8^9\\3^{18}=\left(3^2\right)^9=9^9\end{matrix}\right.\)
\(8^9< 9^9\Leftrightarrow2^{27}< 3^{18}\)
Giải:
a) \(\left\{{}\begin{matrix}2^{90}=\left(2^5\right)^{18}=32^{18}\\5^{36}=\left(5^2\right)^{18}=25^{18}\end{matrix}\right.\)
Vì \(32>25\)
\(\Leftrightarrow32^{18}>25^{18}\)
Hay \(2^{90}>5^{36}\)
Vậy \(2^{90}>5^{36}\).
b) \(\left\{{}\begin{matrix}2^{27}=\left(2^3\right)^9=8^9\\3^{18}=\left(3^2\right)^9=9^9\end{matrix}\right.\)
Vì \(8< 9\)
\(\Rightarrow8^9< 9^9\)
Hay \(2^{27}< 3^{18}\)
Vậy \(2^{27}< 3^{18}\).
Chúc bạn học tốt!