a) Bình phương lên,ta so sánh \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+2\sqrt{35}+7\text{ và }12\)
Xét hiệu hai vế \(\left(\sqrt{5}+\sqrt{7}\right)^2-12=2\sqrt{35}>0\) nên ....
b) \(14=\sqrt{14^2}=\sqrt{196}>\sqrt{195}=\sqrt{13}.\sqrt{15}\)
c) \(\left(\sqrt{8}+3\right)^2=8+2.\sqrt{72}+9;\left(6+\sqrt{2}\right)^2=36+2\sqrt{72}+2\)
\(\left(8+\sqrt{3}\right)^2-\left(6+\sqrt{2}\right)^2=\left(8+9\right)-\left(36+2\right)< 0\)
Do đó \(\left(8+\sqrt{3}\right)^2< \left(6+\sqrt{2}\right)^2\) suy ra \(\left(8+\sqrt{3}\right)< \left(6+\sqrt{2}\right)\)
d) So sánh \(\sqrt{27}+\sqrt{6}\text{ và }\sqrt{48}-1\)
Dễ chứng minh \(\sqrt{27}+\sqrt{6}> \sqrt{48}-1\)
Suy ra \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\) (thêm 1 vào mỗi vế)