Đại số lớp 7

AD

so sánh :

A = \(\dfrac{10^{99}+1}{10^{100}+1}\)

B = \(\dfrac{10^{100}+1}{10^{101}+1}\)

PH
12 tháng 8 2017 lúc 21:11

\(A=\dfrac{10^{99}+1}{10^{100}+1}\)

\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}\)

\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)

Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)

\(\Rightarrow A>B\)

Bình luận (0)
MS
12 tháng 8 2017 lúc 21:18

Áp dụng tính chất:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)

\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)

\(B< \dfrac{10^{100}+10}{10^{101}+10}\)

\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)

\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)

\(B< A\)

Bình luận (0)
EJ
13 tháng 8 2017 lúc 15:09

Ta có : \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)

\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)

\(B< \dfrac{10^{100}+10}{10^{101}+10}\)

\(B< \dfrac{10.\left(10^{99}+1\right)}{10.\left(10^{100}+1\right)}\)

\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)

Vậy \(B< A\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LA
Xem chi tiết
ET
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
NC
Xem chi tiết