Ss:\(2^{91}\) và 535
Ta có ƯCLN(91;35)=7
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
\(\Rightarrow8192^7>3125^7\)
Vậy:\(2^{91}>5^{35}\)
T/ có: 291= 213.7=(213)7=81927
535=55.7=(55)7=31257
Vì 81927>31257 nên 291>535
\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\)
Nên \(8192^7>3125^7\)
Vậy \(2^{91}>5^{35}\)